top of page
FAQ'S
How Cement is Made

Portland cement is the basic ingredient of concrete. Concrete is formed when portland cement creates a paste with water that binds with sand and rock to harden. Cement is manufactured through a closely controlled chemical combination of calcium, silicon, aluminum, iron and other ingredients.

Common materials used to manufacture cement include limestone, shells, and chalk or marl combined with shale, clay, slate, blast furnace slag, silica sand, and iron ore. These ingredients, when heated at high temperatures form a rock-like substance that is ground into the fine powder that we commonly think of as cement.

Bricklayer Joseph Aspdin of Leeds, England first made portland cement early in the 19th century by burning powdered limestone and clay in his kitchen stove. With this crude method, he laid the foundation for an industry that annually processes literally mountains of limestone, clay, cement rock, and other materials into a powder so fine it will pass through a sieve capable of holding water.

Cement plant laboratories check each step in the manufacture of portland cement by frequent chemical and physical tests. The labs also analyze and test the finished product to ensure that it complies with all industry specifications. The most common way to manufacture portland cement is through a dry method. The first step is to quarry the principal raw materials, mainly limestone, clay, and other materials. After quarrying the rock is crushed. This involves several stages. The first crushing reduces the rock to a maximum size of about 6 inches. The rock then goes to secondary crushers or hammer mills for reduction to about 3 inches or smaller. The crushed rock is combined with other ingredients such as iron ore or fly ash and ground, mixed, and fed to a cement kiln. The cement kiln heats all the ingredients to about 2,700 degrees Fahrenheit in huge cylindrical steel rotary kilns lined with special firebrick. Kilns are frequently as much as 12 feet in diameter—large enough to accommodate an automobile and longer in many instances than the height of a 40-story building. The large kilns are mounted with the axis inclined slightly from the horizontal. The finely ground raw material or the slurry is fed into the higher end. At the lower end is a roaring blast of flame, produced by precisely controlled burning of powdered coal, oil, alternative fuels, or gas under forced draft. As the material moves through the kiln, certain elements are driven off in the form of gases. The remaining elements unite to form a new substance called clinker. Clinker comes out of the kiln as grey balls, about the size of marbles. Clinker is discharged red-hot from the lower end of the kiln and generally is brought down to handling temperature in various types of coolers. The heated air from the coolers is returned to the kilns, a process that saves fuel and increases burning efficiency. After the clinker is cooled, cement plants grind it and mix it with small amounts of gypsum and limestone. Cement is so fine that 1 pound of cement contains 150 billion grains. The cement is now ready for transport to ready-mix concrete companies to be used in a variety of construction projects.

Although the dry process is the most modern and popular way to manufacture cement, some kilns in the United States use a wet process. The two processes are essentially alike except in the wet process, the raw materials are ground with water before being fed into the kiln.

Are there different types of portland cement?

Though all portland cement is basically the same, eight types of cement are manufactured to meet different physical and chemical requirements for specific applications:

Type I is a general purpose portland cement suitable for most uses.

Type II is used for structures in water or soil containing moderate amounts of sulfate, or when heat build-up is a concern.

Type III cement provides high strength at an early state, usually in a week or less.

Type IV moderates heat generated by hydration that is used for massive concrete structures such as dams.

Type V cement resists chemical attack by soil and water high in sulfates.

Types IA, IIA and IIIA are cements used to make air-entrained concrete. They have the same properties as types I, II, and III, except that they have small quantities of air-entrained materials combined with them.

White portland cement is made from raw materials containing little or no iron or manganese, the substances that give conventional cement its gray color.

What is alkali-silica reactivity (ASR)?

Alkali-silica reactivity is an expansive reaction between reactive forms of silica in aggregates and potassium and sodium alkalis, mostly from cement, but also from aggregates, pozzolans, admixtures and mixing water. External sources of alkali from soil, deicers and industrial processes can also contribute to reactivity. The reaction forms an alkali-silica gel that swells as it draws water from the surrounding cement paste, thereby inducing pressure, expansion and cracking of the aggregate and surrounding paste. This often results in map-pattern cracks, sometimes referred to as alligator pattern cracking. ASR can be avoided through 1) proper aggregate selection, 2) use of blended cements, 3) use of proper pozzolanic materials and 4) contaminant-free mixing water.

What is the difference between cement and concrete?

Although the terms cement and concrete often are used interchangeably, cement is actually an ingredient of concrete. Concrete is a mixture of aggregates and paste. The aggregates are sand and gravel or crushed stone; the paste is water and portland cement.

Cement comprises from 10 to 15 percent of the concrete mix, by volume. Through a process called hydration, the cement and water harden and bind the aggregates into a rocklike mass. This hardening process continues for years meaning that concrete gets stronger as it gets older.

Portland cement is not a brand name, but the generic term for the type of cement used in virtually all concrete, just as stainless is a type of steel and sterling a type of silver. Therefore, there is no such thing as a cement sidewalk, or a cement mixer; the proper terms are concrete sidewalk and concrete mixer.

Why does concrete crack?

Concrete, like all other materials, will slightly change in volume when it dries out. In typical concrete this change amounts to about 500 millionths. Translated into dimensions-this is about 1/16 of an inch in 10 feet. The reason that contractors put joints in concrete pavements and floors is to allow the concrete to crack in a neat, straight line at the joint when the volume of the concrete changes due to shrinkage.

Will concrete harden under water?

Portland cement is a hydraulic cement which means that it sets and hardens due to a chemical reaction with water. Consequently, it will harden under water.

bottom of page